Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Due to dust grain alignment with magnetic fields, dust polarization observations of far-infrared emission from cold molecular clouds are often used to trace magnetic fields, allowing a probe of the effects of magnetic fields on the star formation process. We present inferred magnetic field maps of the Pillars of Creation region within the larger M16 emission nebula, derived from dust polarization data in the 89 and 154μm continuum using the Stratospheric Observatory For Infrared Astronomy/High-resolution Airborne Wideband Camera. We derive magnetic field strength estimates using the Davis–Chandrasekhar–Fermi method. We compare the polarization and magnetic field strengths to column densities and dust continuum intensities across the region to build a coherent picture of the relationship between star-forming activity and magnetic fields in the region. The projected magnetic field strengths derived are in the range of ∼50–130μG, which is typical for clouds of similarn(H2), i.e., molecular hydrogen volume density on the order of 104–105cm−3. We conclude that star formation occurs in the finger tips when the magnetic fields are too weak to prevent radial collapse due to gravity but strong enough to oppose OB stellar radiation pressure, while in the base of the fingers the magnetic fields hinder mass accretion and consequently star formation. We also support an initial weak-field model (<50μG) with subsequent strengthening through realignment and compression, resulting in a dynamically important magnetic field.more » « lessFree, publicly-accessible full text available July 16, 2026
-
Abstract Circumstellar disk dust polarization in the (sub)millimeter is, for the most part, not from dust grain alignment with magnetic fields but rather indicative of a combination of dust self-scattering with a yet unknown alignment mechanism that is consistent with mechanical alignment. While the observational evidence for scattering has been well established, that for mechanical alignment is less so. Circum-multiple dust structures in protostellar systems provide a unique environment to probe different polarization alignment mechanisms. We present ALMA Band 4 and Band 7 polarization observations toward the multiple young system L1448 IRS3B. The polarization in the two bands are consistent with each other, presenting multiple polarization morphologies. On the size scale of the inner envelope surrounding the circum-multiple disk, the polarization is consistent with magnetic field dust grain alignment. On the very small scale of compact circumstellar regions, we see polarization that is consistent with scattering around sourceaandc, which are likely the most optically thick components. Finally, we see polarization that is consistent with mechanical alignment of dust grains along the spiral dust structures, which would suggest that the dust is tracing the relative gas flow along the spiral arms. If the gas-flow dust grain alignment mechanism is dominant in these cases, disk dust polarization may provide a direct probe of the small-scale kinematics of the gas flow relative to the dust grains.more » « lessFree, publicly-accessible full text available May 21, 2026
-
ABSTRACT Recent (sub)millimetre polarization observations of protoplanetary discs reveal toroidally aligned, effectively prolate dust grains large enough (at least $$\sim 100$$\mu$$m) to efficiently scatter millimetre light. The alignment mechanism for these grains remains unclear. We explore the possibility that gas drag aligns grains through gas–dust relative motion when the grain’s centre of mass is offset from its geometric centre, analogous to a badminton birdie’s alignment in flight. A simple grain model of two non-identical spheres illustrates how a grain undergoes damped oscillations from flow-induced restoring torques which align its geometric centre in the flow direction relative to its centre of mass. Assuming specular reflection and subsonic flow, we derive an analytical equation of motion for spheroids where the centre of mass can be shifted away from the spheroid’s geometric centre. We show that a prolate or an oblate grain can be aligned with the long axis parallel to the gas flow when the centre of mass is shifted along that axis. Both scenarios can explain the required effectively prolate grains inferred from observations. Application to a simple disc model shows that the alignment time-scales are shorter than or comparable to the orbital time. The grain alignment direction in a disc depends on the disc (sub-)structure and grain Stokes number (St) with azimuthal alignment for large St grains in sub-Keplerian smooth gas discs and for small St grains near the gas pressure extrema, such as rings and gaps.more » « less
-
Abstract The HH 111 protostellar disk has recently been found to host a pair of spiral arms. Here we report the dust polarization results in the disk as well as the inner envelope around it, obtained with the Atacama Large Millimeter/submillimeter Array in continuum atλ∼ 870μm and ∼0.″05 resolution. In the inner envelope, polarization is detected with a polarization degree of ∼6% and an orientation almost everywhere parallel to the minor axis of the disk and thus likely to be due to the dust grains magnetically aligned mainly by toroidal fields. In the disk, the polarization orientation is roughly azimuthal on the far side and becomes parallel to the minor axis on the near side, with a polarization gap in between on the far side near the central protostar. The disk polarization degree is ∼2%. The polarized intensity is higher on the near side than the far side, showing a near–far side asymmetry. More importantly, the polarized intensity and thus polarization degree are lower in the spiral arms but higher in between the arms, showing an anticorrelation of the polarized intensity with the spiral arms. Our modeling results indicate that this anticorrelation is useful for constraining the polarization mechanism and is consistent with the dust self-scattering by the grains that have grown to a size of ∼150μm. The interarms are sandwiched and illuminated by two brighter spiral arms and thus have higher polarized intensity. Our dust self-scattering model can also reproduce the observed polarization orientation parallel to the minor axis on the near side and the observed azimuthal polarization orientation at the two disk edges in the major axis. Further modeling work is needed to study how to reproduce the observed near–far side asymmetry in the polarized intensity and the observed azimuthal polarization orientation on the far side.more » « less
-
Abstract Millimeter and submillimeter observations of continuum linear dust polarization provide insight into dust grain growth in protoplanetary disks, which are the progenitors of planetary systems. We present the results of the first survey of dust polarization in protoplanetary disks at 870μm and 3 mm. We find that protoplanetary disks in the same molecular cloud at similar evolutionary stages can exhibit different correlations between observing wavelength and polarization morphology and fraction. We explore possible origins for these differences in polarization, including differences in dust populations and protostar properties. For RY Tau and MWC 480, which are consistent with scattering at both wavelengths, we present models of the scattering polarization from several dust grain size distributions. These models aim to reproduce two features of the observational results for these disks: (1) both disks have an observable degree of polarization at both wavelengths; and (2) the polarization fraction is higher at 3 mm than at 870μm in the centers of the disks. For both disks, these features can be reproduced by a power-law distribution of spherical dust grains with a maximum radius of 200μm and high optical depth. In MWC 480, we can also reproduce features (1) and (2) with a model containing large grains (amax= 490μm) near the disk midplane and small grains (amax= 140μm) above and below the midplane.more » « less
-
Abstract Magnetic fields play essential roles in protoplanetary disks. Magnetic fields in the disk atmosphere are of particular interest, as they are connected to the wind-launching mechanism. In this work, we study the polarization of the light scattered off of magnetically aligned grains in the disk atmosphere, focusing on the deviation of the polarization orientation from the canonical azimuthal direction, which may be detectable in near-IR polarimetry with instruments such as VLT/SPHERE. We show with a simple disk model that the polarization can even be oriented along the radial (rather than azimuthal) direction, especially in highly inclined disks with toroidally dominated magnetic fields. This polarization reversal is caused by the anisotropy in the polarizability of aligned grains and is thus a telltale sign of such grains. We show that the near-IR light is scattered mostly byμm-sized grains or smaller at theτ= 1 surface and such grains can be magnetically aligned if they contain superparamagnetic inclusions. For comparison with observations, we generate synthetic maps of the ratios ofUϕ/IandQϕ/I, which can be used to infer the existence of (magnetically) aligned grains through a negativeQϕ(polarization reversal) and/or a significant level ofUϕ/I. We show that two features observed in the existing data, an asymmetric distribution ofUϕwith respect to the disk minor axis and a spatial distribution ofUϕthat is predominantly positive or negative, are incompatible with scattering by spherical grains in an axisymmetric disk. They provide indirect evidence for scattering by aligned nonspherical grains.more » « less
-
Abstract Crescent-shaped structures in transition disks hold the key to studying the putative companions to the central stars. The dust dynamics, especially that of different grain sizes, is important to understanding the role of pressure bumps in planet formation. In this work, we present deep dust continuum observation with high resolution toward the Oph IRS 48 system. For the first time, we are able to significantly trace and detect emission along 95% of the ring crossing the crescent-shaped structure. The ring is highly eccentric with an eccentricity of 0.27. The flux density contrast between the peak of the flux and its counterpart along the ring is ∼270. In addition, we detect a compact emission toward the central star. If the emission is an inner circumstellar disk inside the cavity, it has a radius of at most a couple of astronomical units with a dust mass of 1.5 × 10 −8 M ⊙ , or 0.005 M ⊕ . We also discuss the implications of the potential eccentric orbit on the proper motion of the crescent, the putative secondary companion, and the asymmetry in velocity maps.more » « less
-
ABSTRACT Polarization is a unique tool to study the dust grains of protoplanetary discs. Polarization around HL Tau was previously imaged using the Atacama Large Millimeter/submillimeter Array (ALMA) at Bands 3 (3.1 mm), 6 (1.3 mm), and 7 (0.87 mm), showing that the polarization orientation changes across wavelength λ. Polarization at Band 7 is predominantly parallel to the disc minor axis but appears azimuthally oriented at Band 3, with the morphology at Band 6 in between the two. We present new ∼0.2 arcsec (29 au) polarization observations at Q-Band (7.0 mm) using the Karl G. Jansky Very Large Array (VLA) and at Bands 4 (2.1 mm), 5 (1.5 mm), and 7 using ALMA, consolidating HL Tau’s position as the protoplanetary disc with the most complete wavelength coverage in dust polarization. The polarization patterns at Bands 4 and 5 follow the previously identified morphological transition with wavelength. From the azimuthal variation, we decompose the polarization into contributions from scattering (s) and thermal emission (t). s decreases slowly with increasing λ, and t increases more rapidly which are expected from optical depth effects of toroidally aligned scattering prolate grains. The weak λ dependence of s is inconsistent with the simplest case of Rayleigh scattering by small grains in the optically thin limit but can be affected by factors such as optical depth, disc substructure, and dust porosity. The sparse polarization detections from the Q-band image are also consistent with toroidally aligned prolate grains.more » « less
An official website of the United States government
